
REAL-TIME CORPUS-BASED CONCATENATIVE SYNTHESIS FOR
SYMBOLIC NOTATION

Daniele Ghisi
STMS Lab

(IRCAM, CNRS, UPMC)
danieleghisi@bachproject.net

Carlos Agon
STMS Lab

(IRCAM, CNRS, UPMC)
carlos.agon@ircam.fr

ABSTRACT

We introduce a collection of modules designed to segment,
analyze, display and sequence symbolic scores in real-time.
This mechanism, inspired from CataRT’s corpus-based con-
catenative synthesis, is implemented as a part of the dada
library for Max, currently under development.

1. INTRODUCTION

Corpus-based concatenative synthesis is a largely known
technique, providing mechanisms for real-time sequencing
of grains (extracted from a large corpus of segmented and
descriptors-analyzed sounds), according to their proximity
in some descriptors space. Among the existing tools deal-
ing with such technique, the CataRT modules [1] are prob-
ably the most widely used: taking advantage of the features
in the FTM library [2], they allow segmentation and anal-
ysis of the original sound files, as well as the exploration
of the generated corpus via an interactive two-dimensional
display, inside the Max environment.

CataRT is oriented to real-time interaction on audio data,
essentially omitting any symbolic representation of events.
Although some work has been done recently to link sym-
bolic notation with CataRT , such as [3], none of these
works, to the best of our knowledge, is meant to fully bring
the ideas of concatenative synthesis into the symbolic do-
main.

In this article we describe a corpus-based concatenative
system designed and implemented in order to bring into
Max the ability to segment, analyze and explore symbolic
scores, in a similar fashion than CataRT does with sounds.
This system will be distributed as part of the dada library
(currently under development 1 ), which will contain a set

1 A 0.0.1 alpha version of dada is publicly available at the
address http://data.bachproject.net/download.
php?file=dada_0.0.1.zip), requiring Max 6.1.7 or
higher (http://cycling74.com), bach 0.7.8.5 or higher
(http://data.bachproject.net/download.php?
file=bach_0.7.8.5.zip), and cage 0.3.5 or higher
(http://data.bachproject.net/download.php?file=
cage_0.3.5.zip). This release is actually a very crude Macintosh-
only release, including the very first modules of dada. Among such
modules are all the tools used within the scope of this paper. A modified
version of the two examples proposed in section 3 can be accessed via
dada.catart’s help file.

Copyright: c©2016 Daniele Ghisi et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

of non-standard two-dimensional interfaces dealing with
symbolic musical content. The dada library, in turn, is
based upon the bach library, which provides Max with a
set of tools for the graphical representation of musical no-
tation, and for the manipulation of musical scores through
a variety of approaches ranging from GUI interaction to
constraint programming, and sequencing. The bach library
is oriented to real-time interaction, and is meant to inter-
operate easily with other processes or devices controlled
by Max, such as DSP tools, MIDI instruments, or generic
hardware systems [4, 5]. A number of high-level modules
based on bach, solving typical algorithmic and computer-
aided composition problems, have also been collected to
form the cage library [7].

The system we describe in this article naturally extends
the concept of score granulation (introduced in [6] and then
later implemented in the cage.granulate module [7]), al-
lowing a finer control on the concatenation of grains, ac-
cording to some relationships between the grain features
extracted during the analysis process. Moreover, the fea-
ture extraction is heavily based on the bach lambda loop vi-
sual programming pattern [5], hence making analysis fully
customizable.

2. OVERVIEW AND MODULES

The system relies on three different modules: dada.segment,
performing segmentation and feature extraction, dada.base,
implementing the actual database engine, and dada.catart,
a two-dimensional graphic interface capable of organizing
and interacting with the extracted grains.

2.1 Segmentation

The dada.segment module performs the segmentation of
the original scores, contained either in a bach.roll (as un-
measured musical data) or bach.score (as classically no-
tated musical data), in one of the following manners:

• Via markers: each marker in the original bach.roll
is considered as a cutting point at which the score is
sliced. All the slices (grains) are then collected.

• Via equations: a single value (in milliseconds for
bach.roll, or as a fraction of the bar or beat duration,
for bach.score) or more generally an equation can be
used to establish the size of each grain. In bach.roll
this equation can take as variable the grain onset,
and is especially useful when segmentation needs to

mailto:danieleghisi@bachrpoject.net
mailto:carlos.agon@ircam.fr
http://data.bachproject.net/ download.php?file=dada_0.0.1.zip
http://data.bachproject.net/ download.php?file=dada_0.0.1.zip
http://cycling74.com
http://data.bachproject.net/download.php?file=bach_0.7.8.5.zip
http://data.bachproject.net/download.php?file=bach_0.7.8.5.zip
http://data.bachproject.net/download.php?file=cage_0.3.5.zip
http://data.bachproject.net/download.php?file=cage_0.3.5.zip
http://creativecommons.org/licenses/by/3.0/


be performed roughly independently from the mu-
sical content itself. In bach.score, voices are pre-
segmented into chunks of measures (according to a
pattern established via the ‘presegment’ attribute),
and each chunk is in turn segmented into grains whose
duration is determined by the aforementioned equa-
tion - possibly having as variables the measure num-
ber, the measure division (beat), and the measure
overall symbolic duration (see for instance fig. 1).

• Via label families: differently from sound files, scores
easily allow non-vertical segmentations, where only
a portion of the musical content happening in a given
time span is accounted for (see fig. 2). If labels are
assigned to notes or chords in the original score, a
grain is created for each label, containing all the el-
ements carrying such label.

Figure 1. Segmentation of a bach.score into grains hav-
ing length equal to half of the beat (i.e. an eighth note).
The first five grains are displayed in the bottom part of the
patch.

2.2 Analysis

Grain analysis is performed during the segmentation pro-
cess. On one side, dada.segment is capable of adding some
straightforward metadata to the segmented grains, such as
their duration, onset, index, label (if segmentation is car-
ried out via label families) and notation object type (ei-
ther ‘roll’ for bach.roll or ’score’ for bach.score); in case
the grain comes from a bach.score, tempo, beat phase (the
beat on which the grain starts), symbolic duration and bar
number can also be added.

On the other hand, dada.segment allows the definition
of custom features via a lambda loop mechanism (see [3,
5]): grains to be analyzed are output one by one from the
rightmost (lambda) outlet, preceded by the custom fea-
ture name; the user should provide a patching algorithm
to extract the requested feature, and then plug the result
back into dada.segment’s rightmost (lambda) inlet. Fea-
ture names, defined in an attribute, are hence empty skele-
tons which will be ‘filled’ by the analysis implementation,
via patching. This programming pattern is widely used

Figure 2. Segmentation of a bach.roll according to label
families. Labeled items are automatically enclosed in col-
ored contours in the original bach.roll. Notice how fam-
ilies can overlap (in the example above, one note is la-
beled twice, and hence assigned to two families at the same
time). The first three grains (corresponding to the first
three label families) are displayed in the bottom part of the
patch.

throughout the bach library (one can easily compare the
described mechanism, for instance, with bach.constraints’s
way of implementing custom constraints [5]), and allows
users to implement virtually any type of analysis on the
incoming data. Nevertheless, some ready-to-use abstrac-
tions are provided (see fig. 3) for standard features such as
centroid, spread, loudness or item counting.

Analyzed features are collected for each grain, and output
as metadata from the middle outlet of dada.segment.

2.3 Database

Once the score grains have been produced and analyzed,
they are stored in a SQLite database, whose engine is im-
plemented by the dada.base object. Hence, data com-
ing from dada.segment are properly formatted and fed to
dada.base, on which standard SQLite queries can be per-
formed (see figure 3). Databases can be saved to disk and
loaded from disk.

2.4 Interface

Finally, the dada.catart object provides a two-dimensional
graphic interface for the database content. Its name is an
explicit acknowledgment to the piece of software which in-
spired it. Grains are by default represented by small circles
in a two dimensional plane. Two feature can be assigned
to the horizontal and vertical axis respectively; two more
features can be mapped on the color and size of the cir-
cles. Finally, one additional integer valued feature can be
mapped on the grain shape (circle, triangle, square, pen-
tagon, and so forth), adding up to a total number of five



Figure 3. When the patch opens, a table named ‘scores’
is created in the database named ‘corpus’, collecting all
the grains. This table has five columns: the content of
the grain (a bach Lisp-like linked list), the onset the grain
had in the original score, its centroid, loudness and spread
(all floating point numbers). When the ‘dump body’ mes-
sage is clicked, the score contained in the bach.roll is seg-
mented and analyzed by centroid, loudness and spread
(respectively computed via the dada.analysis.centroid,
dada.analysis.spread and dada.analysis.loudness modules
inside the lambda loop). The database is then filled, and
standard SQLite queries can be performed on it.

features being displayed at once (see fig. 4). The database
elements can be sieved by setting a where attribute, im-
plementing a standard SQLite ‘WHERE’ clause. The vast
majority of the display features can be customized, such as
colors, text fonts, zoom and so on.

Each grain is associated with a ‘content’ field, which is
output either on mouse hovering or on mouse clicking.
The content is usually assigned to the bach Lisp-like linked
list representing the score [5]. The sequencing can also be
beat-synchronous, provided that a tempo and a beat phase
fields are assigned: in this case the content of each grain is
not output as soon as the grain is clicked upon (or mouse
hovered), and its sequencing is postponed in order for it
to align with the following beat, according to the current
tempo (obtained from the previously played grains).

In combination with standard patching techniques, these
features also allow the real-time display, sequencing and
recording of grains (see section 3 for an example).

A knn message allows to retrieve the k-th nearest sam-
ples for any given (x, y) position. A system of messages
inspired by turtle-graphics is also implemented, in order
to be able to move programmatically across the grains;

Figure 4. The dada.catart object displaying the database
built in figure 3. Each element of the database (grain) is
represented by a circle. On the horizontal axis grains are
sorted according to the spread, while on the vertical axis
grains are organized according to their centroid. The colors
scale is mapped on the grain onsets, while the circle size
represents the grain loudness.

namely a ‘turtle’ grain can be assigned via the setturtle
message (setting the turtle on the nearest grain with re-
spect to a given (x, y) position), and then the turtle can
range across the grains via the turtle message, moving it of
some (∆x,∆y) and then choosing the nearest grain with
respect to the new position (disregarding the original grain
itself). The turtle is always identified in a dada.catart by
an hexagon (see fig. 7 for an example).

3. EXAMPLES

3.1 An interactive tonal centroid palette

As a first example, in the patch displayed in figure 6 we
segment (in grains of 1 second each) and then analyze the
first eight Lieder from Schubert’s Winterreise. During the
analysis process we take advantage of the tonal centroid
transform proposed by Harte, Sandler and Gasser in [8],
and implemented in the cage library (see [7]). The hori-
zontal axis displays the phase of the tonal centroid with re-
spect to the plane of fifths, while the vertical axis displays
the phase referred to the plane of minor thirds (both range
from -180 to 180 degrees). The analysis subpatch com-
puting the phase of the projection of the tonal centroid on
the plane of fifths is displayed in fig. 5 (the one for minor
thirds is analogous). Both colors and shapes are mapped
on the Lieder number.

We can use this representation as a sort of ‘interactive
tonal centroid palette’: each vertical line refers to a note
in the circle of fifths, each horizontal line refers to an aug-



mented chord in the circle of minor thirds. If we focus
especially on the horizontal axis, we notice for instance
that red circles (belonging to the first Lied, Gute Nacht,
in D minor) are mostly scattered around the vertical line
referring to the D, or that orange triangles (belonging to
the second Lied, Die Wetterfahne, in A minor) are mostly
scattered in the region around A.

A record mechanism is implemented, and the recorded
data is collected in the score displayed at the bottom of the
image. The score can then be saved, quantized or exported,
taking advantage of the features of the bach library [5].

Figure 5. The subpatch computing the phase of the pro-
jection of the tonal centroid of a bach.roll grain on the
plain of fifths. All the pitches, converted to pitch classes,
are weighted with their own velocities and gathered in a
chroma vector, whose tonal centroid is computed via the
algorithm proposed in [8]. The first two components of the
tonal centroid (referring to the plane of fifths) are picked,
and the angle formed by the vector is computed.

3.2 Rearranging beats

As a second example, consider figure 7, where we have
segmented the first Bach invention (BWV 772) by beat.
On horizontal axis we display the measure number, on ver-
tical axis we display the position of the beginning of the
grain inside the measure (phase). We can then send turtle
messages in order to navigate through the grains, so that we
can read the complete score as it was (patch mechanism at
top left corner of the image), or only read the last beats of
each measure from last to first measure (top-middle part of
the image), or even move in random walks among the beats
(top-right part of the image).

4. CONCLUSION AND FUTURE WORK

We have presented a system operating on symbolic mu-
sical content, directly inspired by the CataRT modules,
and implemented as part of the dada library for Max,
currently under development. This system naturally ex-
tends the symbolic granulation engine implemented in
cage.granulate, allowing to organize score grains accord-
ing to custom analysis features.

This system can be improved in a certain number of ways.
For one thing, the number of predefined analysis modules
should be increased, by bridging into the symbolic do-
main important audio descriptors such as roughness, inhar-
monicity, and so on. The relationships between audio and
symbolic descriptors could be in itself a topic for further
investigations. Moreover, the dada.segment module is cur-
rently able to segment based on given markers, equations
or labels; however it is not able, by design, to infer such
markers or labels. One of the interesting topics of future
research might hence be to integrate inside the process a
system for semi-automatic segmentation of scores, and a
module for pattern retrieval. Also, the label-based extrac-
tion currently works only for bach.roll, and a bach.score
version of such an algorithm should be also implemented.

5. REFERENCES

[1] D. Schwarz, G. Beller, B. Verbrugghe, and S. Britton,
“Real-time corpus-based concatenative synthesis with
catart,” in IN PROC. OF THE INT. CONF. ON DIGI-
TAL AUDIO EFFECTS (DAFX-06, 2006, pp. 279–282.

[2] N. Schnell, R. Borghesi, D. Schwarz, F. Bevilacqua,
and R. Müller, “FTM - Complex Data Structures for
Max,” in Proceedings of the International Computer
Music Conference, 2005.

[3] A. Einbond, C. Trapani, A. Agostini, D. Ghisi, and
D. Schwarz, “Fine-tuned control of concatenative syn-
thesis with catart using the bach library for max,” in
Proceedings of the International Computer Music Con-
ference, Athens, Greece, 2014.

[4] A. Agostini and D. Ghisi, “Real-time computer-aided
composition with bach,” Contemporary Music Review,
no. 32 (1), pp. 41–48, 2013.

[5] ——, “A max library for musical nota-
tion and computer-aided composition,” Com-
puter Music Journal, vol. 39, no. 2, pp.
11–27, 2015/10/03 2015. [Online]. Available:
http://dx.doi.org/10.1162/COMJ a 00296

[6] ——, “bach: an environment for computer-aided com-
position in Max,” in Proceedings of the International
Computer Music Conference (ICMC 2012), Ljubljana,
Slovenia, 2012, pp. 373–378.

[7] A. Agostini, E. Daubresse, and D. Ghisi, “cage: a
High-Level Library for Real-Time Computer-Aided
Composition,” in Proceedings of the International
Computer Music Conference, Athens, Greece, 2014.

http://dx.doi.org/10.1162/COMJ_a_00296


[8] C. Harte, M. Sandler, and M. Gasser, “Detecting har-
monic change in musical audio,” in In Proceedings
of Audio and Music Computing for Multimedia Work-
shop, 2006.



Figure 6. A patch displaying the database build from the first eight Lieder of Schubert’s Winterreise, organized by tonal
centroids (the phase of the projection on the plane of fifths is on horizontal axis, the phase of the projection on the plane
of minor thirds is on the vertical axis). Both colors and shapes identify the Lieder number (1 being the circle, 2 being
the triangle, 3 being the square, and so on). When the recording mechanism is turned on, grains can be played via mouse
hovering, and the bottommost bach.roll contains the recorded result.



Figure 7. An example showing the manipulation of the first Bach invention (BWV 772), segmented by beat, and rearranged
so to play and record the last beats of each measure (starting from last measure, and ending with first one). Notice how ties
are preserved during the segmentation process (e.g. between measure 6 and 7) of the upper bach.score, rebarred in measure
2 of the lower one.


	 1. Introduction
	 2. Overview and modules
	2.1 Segmentation
	2.2 Analysis
	2.3 Database
	2.4 Interface

	 3. Examples
	3.1 An interactive tonal centroid palette
	3.2 Rearranging beats

	 4. Conclusion and future work
	 5. References

